skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hetland, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This manuscript illustrates the resonance between continental shelf oceans and the semidiurnal atmospheric tidal wind, explainingO(10−2) m semidiurnal sea surface height (SSH) variations in detided datasets. The resonance, similar to amplification of semidiurnal oceanic tides on the gentle and wide shelf, results in pronounced, offshore-attenuated standing waves on the shelf which is driven by the cross-shore pressure gradient force, Coriolis force, and the rotary wind stress. Observations and numerical results from the Texas–Louisiana shelf confirm this mechanism, where a significant presence of the semidiurnal tidal wind couples withO(10−1) m s−1ocean currents, influencing SSH distribution and sustaining the wave structure. The consistency of the interaction and momentum budgets with the analytical solution suggests the robustness of the semidiurnal atmospheric tidal wind interacting with the shelf ocean. Notably, these findings suggest that similar resonances could occur on other gentle shelves known for enhancing semidiurnal oceanic tides and contribute 3%–10% of the wind work. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract Classic deformation theory includes parameters—divergence, total strain, and vorticity—that are invariant to changes in the coordinate system. However, these parameters are sometimes ambiguous with respect to characterizing how fronts are formed and maintained because the presence of a front imposes a reference coordinate system. To help remedy this ambiguity, we propose a framework in frontal coordinates based on along- and cross-front velocity gradients to better characterize frontal maintenance, which can also be used to define divergence and normal strain in frontal coordinates. The framework with these four parameters (along-, cross-front velocity gradients, divergence, and normal strain in frontal coordinate) defines eight characteristic flow types at a front, providing a complete characterization of the flow that strengthens or weakens a front. This framework highlights the importance of the “strain efficiency” concept, which unambiguously defines the contribution of total strain to frontogenesis. Two examples, one based on a realistic simulation of submesoscales in the northern Gulf of Mexico and the other based on an idealized model with similar flow characteristics, are provided to demonstrate how this framework can be used to enhance our understanding of frontal dynamics in submesoscale flows. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Abstract The impacts of spurious numerical salinity mixing on the larger‐scale flow and tracer fields are characterized using idealized simulations. The idealized model is motivated by realistic simulations of the Texas‐Louisiana shelf and features oscillatory near‐inertial wind forcing. can exceed the physical mixing from the turbulence closure in frontal zones and within the mixed layer. This suggests that simulated mixing processes in frontal zones are driven largely by . Near‐inertial alongshore wind stress amplitude is varied to identify a base case that maximizes the ratio of to in simulations with no prescribed horizontal mixing. We then test the sensitivity of the base case with three tracer advection schemes (MPDATA, U3HC4, and HSIMT) and conduct ensemble runs with perturbed bathymetry. Instability growth is evaluated using the volume‐integrated eddy kinetic energy and available potential energy . While all schemes have similar total mixing, the HSIMT simulations have over double the volume‐integrated and 20% less relative to other schemes, which suppresses the release of and reduces the by roughly 25%. This results in reduced isohaline variability and steeper isopycnals, evidence that enhanced suppresses instability growth. Differences in and between the MPDATA and U3HC4 simulations are marginal. However, the U3HC4 simulations have 25% more . Experiments with variable horizontal viscosity and diffusivity coefficients show that small amounts of prescribed horizontal mixing improve the representation of the ocean state for all advection schemes by reducing the and increasing the . 
    more » « less
  4. Abstract Studies of internal wave-driven mixing in the coastal ocean have been mainly focused on internal tides, while wind-driven near-inertial waves (NIWs) have received less attention in this regard. This study demonstrates a scenario of NIW-driven mixing over the Texas-Louisiana shelf. Supported by a high-resolution simulation over the shelf, the NIWs driven by land-sea breeze radiate downward at a sharp front and enhance the mixing in the bottom boundary layer where the NIWs are focused due to slantwise critical reflection. The criterion for slantwise critical reflection of NIWs is (where ω is the wave frequency, S bot is the bottom slope, and S p is the isopycnal slope) under the assumption that the mean flow is in a thermal wind balance and only varies in the slope-normal direction. The mechanism driving the enhanced mixing is explored in an idealized simulation. During slantwise critical reflection, NIWs are amplified with enhanced shear and periodically destratify a bottom boundary layer via differential buoyancy advection, leading to periodically enhanced mixing. Turbulent transport of tracers is also enhanced during slantwise critical reflection of NIWs, which has implications for bottom hypoxia over the Texas-Louisiana shelf. 
    more » « less
  5. Abstract This study describes a specific type of critical layer for near-inertial waves (NIWs) that forms when isopycnals run parallel to sloping bathymetry. Upon entering this slantwise critical layer, the group velocity of the waves decreases to zero and the NIWs become trapped and amplified, which can enhance mixing. A realistic simulation of anticyclonic eddies on the Texas-Louisiana shelf reveals that such critical layers can form where the eddies impinge onto the sloping bottom. Velocity shear bands in the simulation indicate that windforced NIWs are radiated downward from the surface in the eddies, bend upward near the bottom, and enter critical layers over the continental shelf, resulting in inertially-modulated enhanced mixing. Idealized simulations designed to capture this flow reproduce the wave propagation and enhanced mixing. The link between the enhanced mixing and wave trapping in the slantwise critical layer is made using ray-tracing and an analysis of the waves’ energetics in the idealized simulations. An ensemble of simulations is performed spanning the relevant parameter space that demonstrates that the strength of the mixing is correlated with the degree to which NIWs are trapped in the critical layers. While the application here is for a shallow coastal setting, the mechanisms could be active in the open ocean as well where isopycnals align with bathymetry. 
    more » « less
  6. Abstract Over the Texas-Louisiana Shelf in the Northern Gulf of Mexico, the eutrophic, fresh Mississippi/Atchafalaya river plume isolates saltier waters below, supporting the formation of bottom hypoxia in summer. The plume also generates strong density fronts, features of the circulation that are known pathways for the exchange of water between the ocean surface and the deep. Using high-resolution ocean observations and numerical simulations, we demonstrate how the summer land-sea breeze generates rapid vertical exchange at the plume fronts. We show that the interaction between the land-sea breeze and the fronts leads to convergence/divergence in the surface mixed layer, which further facilitates a slantwise circulation that subducts surface water along isopycnals into the interior and upwells bottom waters to the surface. This process causes significant vertical displacements of water parcels and creates a ventilation pathway for the bottom water in the northern Gulf. The ventilation of bottom water can bypass the stratification barrier associated with the Mississippi/Atchafalaya river plume and might impact the dynamics of the region’s dead zone. 
    more » « less
  7. null (Ed.)